

ASSIMILATION DE L'AZOTE CHEZ LES PLANTES

Aspects physiologique, biochimique et moléculaire

Jean-François Morot-Gaudry, coord.

assimilation de l'azote chez les plantes

aspects physiologique, biochimique et moléculaire

assimilation de l'azote chez les plantes

aspects physiologique, biochimique et moléculaire

Jean-François Morot-Gaudry, éd.

MIEUX COMPRENDRE

Ouvrages parus dans la même collection:

L'eau dans l'espace rural

RIOU C., BONHOMME R., CHASSIN P., NEVEU A., PAPY F., éd. 1997, sous presse.

La pomme de terre

P. ROUSSELLE, Y. ROBERT, Y.-C. CROSNTER, éd. 1996, 620 p.

Vie microbienne du sol et production végétale

Pierre Davet 1996, 380 p.

Nutrition des ruminants domestiques

R. Jarrige, Y. Ruckebush C. Demarquilly, M.-H. Farce, M. Journet 1995, 921 p.

Sols caillouteux et production végétale

Raymond Gras 1994, 178 p.

Biologie de la lactation

Jack Martinet, Louis-Marie Houdebine 1993, 587 p.

Amélioration des espèces végétales cultivées.

Objectifs et critères de sélection André Gallais, Hubert Bannerot 1992, 768 p.

La régression non linéaire : méthodes et applications en biologie Sylvie Huet, Emmanuel Jolivet,

Antoine Messéan 1992, 250 p.

L'épidémiologie en pathologie végétale : mycoses aériennes

Franzt RAPILLY 1991, 318 p.

Principes d'amélioration génétique des animaux domestiques

Francis MINVIELLE 1990, 211 p.

Cytogénétique des mammifères d'élevage

Paul C. POPESCU 1989, 114 p.

Les oligo-éléments en agriculture et élevage.

Yves Coïc, Marcel Coppenet 1989, 114 p.

Éléments de virologie végétale (épuisé)

eISBN: 978-2-7592-3624-4

Pierre CORNUET 1987, 208 p.

© INRA, Paris 1997

Le code de la propriété intellectuelle du 1^{er} juillet 1992 interdit la photocopie à usage collectif sans autorisation des ayants droit. Le non respect de cette disposition met en danger l'édition, notamment scientifique. Toute reproduction, partielle ou totale, du présent ouvrage est interdite sans autorisation de l'éditeur ou du Centre français d'exploitation du droit de copie (CFC), 3 rue Hautefeuille, Paris 6^e.

Avant-propos

Pour construire leur machinerie cellulaire, en particulier leurs protéines, les plantes prélèvent directement l'azote minéral dans le sol, sous forme de nitrate et d'ammonium, et éventuellement fixent l'azote moléculaire de l'air (cas des légumineuses). L'azote minéral du sol est fourni généralement sous forme d'engrais nitriques ou ammonitriques. Si les engrais azotés ont permis depuis une quarantaine d'années d'augmenter beaucoup les rendements des cultures, les nitrates non assimilés, entraînés par les eaux de lessivage des sols, sont responsables de la pollution des nappes phréatiques. De plus, les nitrates qui peuvent s'accumuler dans les organes végétaux récoltables (feuilles de laitue, d'épinard, de tabac, tubercules de pommes de terre et racines tubérisées de carotte) sont considérés comme un danger potentiel pour la santé humaine. Désormais l'agriculture doit concilier le maintien des rendements agricoles élevés et le respect de la qualité de l'environnement. Un des moyens pour atteindre ces objectifs est d'augmenter l'efficacité d'assimilation et de gestion de l'azote par les plantes. La sélection classique de nouvelles variétés plus performantes a sans doute atteint ses limites. Il est nécessaire maintenant de comprendre les mécanismes physiologiques, biochimiques, moléculaires, impliqués dans les voies d'assimilation de l'azote, afin de les modifier et améliorer ainsi les performances des plantes vis-à-vis de l'azote durant leur croissance et leur développement.

Cet ouvrage publie les principales connaissances, acquises ces vingt dernières années sur le métabolisme azoté, qui permettent d'envisager de nouvelles stratégies d'amélioration des espèces et de nouveaux itinéraires techniques de cultures de plantes d'intérêt agronomique.

Après un bref rappel du cycle de l'azote, il est décrit comment le nitrate et l'ammonium sont prélevés et assimilés par les plantes. Les mécanismes d'absorption, de transport, de stockage et de métabolisation de ces éléments azotés minéraux sont présentés en détails.

Il s'ensuit une description de la structure et de la fonction des quatre principales enzymes impliquées dans la réduction des nitrates et l'assimilation de l'ammonium. Une attention particulière a été portée à la description des mécanismes moléculaires qui gèrent la régulation de l'expression des gènes codant ces enzymes, dans des compartiments tissulaires, cellulaires ou infracellulaires donnés.

Les types d'assimilation de l'azote, qui font intervenir des associations bactéries, champignons, plantes, c'est-à-dire l'assimilation symbiotique et l'assimilation mycorhizienne

font l'objet des chapitres suivants. Dans ces chapitres, les aspects moléculaires et génétiques ont été très développés ainsi que la description des mécanismes de reconnaissance entre micro-organismes et plante hôte (signaux symbiotiques).

La synthèse des acides aminés, les relations entre métabolisme azoté, respiration et photosynthèse, l'effet de l'azote sur l'orientation des flux de carbone sont présentés et examinés à la lumière des données récentes de la biologie.

Après un rappel de la méthodologie, ¹⁵N, isotope stable de l'azote, largement utilisé pour suivre le devenir de cet élément chez les végétaux, il est décrit comment l'azote est géré au cours de la croissance et du développement des céréales, des plantes fourragères et ligneuses (arbres fruitiers). Les mécanismes de mise en réserve de l'azote dans les graines de céréales font l'objet d'une attention particulière. Les mécanismes de protéolyse sont évoqués sous un aspect nouveau et original.

La dernière partie est dédiée aux aspects agronomiques et écophysiologiques, sans oublier le problème de la pollution.

Cet ouvrage s'adresse aux étudiants de 2^e et 3^e cycles universitaires et des écoles d'agronomie et d'agriculture. Il pourra être très utile également aux professeurs de ces établissements et à toutes les personnes qui doivent acquérir rapidement un minimum de connaissance dans le domaine de l'assimilation de l'azote chez les plantes supérieures d'intérêt agronomique.

Étant donné la complexité de l'ouvrage, n'est présenté que le métabolisme primaire de l'azote. La synthèse des métabolites secondaires (alcaloïdes... par exemple) et des acides nucléiques n'est pas abordée.

Ce livre a demandé la participation de nombreux auteurs. Pour des raisons de commodité, de taille et de coût, les chercheurs travaillant sur l'azote n'ont pas tous été consultés, qu'ils veuillent bien m'en excuser. J'ai sélectionné les équipes qui, par l'avancement de leurs travaux, pouvaient faire facilement le point sur un chapitre donné. De plus l'intérêt agronomique porté par les chercheurs a souvent guidé mon choix.

Je voudrais exprimer toute ma gratitude et ma reconnaissance à tous les auteurs de cet ouvrage qui ont accepté, malgré leur emploi du temps très chargé, d'écrire un chapitre. Je remercie également tous mes collègues qui m'ont encouragé dans cette opération, qui m'ont conseillé et ont accepté de relire les épreuves, en particulier S. Chaillou, T. Lamaze, A. Limami, J. Farineau, J.P. Boutin, B. Hirel, M. Cren et mesdames M.L. Touraton, F. Maillier, Y. Roux et G. Cordillot qui m'ont apporté une aide précieuse à la mise en forme de ces articles.

Sommaire

Assimilation des nitrates : aspect historique	13
Assimilation du nitrate et de l'ammonium	
1 - Sources et cycle de l'azote	21
Engrais azotés	21
Cycle de l'azote	22
Azote des sols	23
Assimilation de l'azote par les plantes	23
Bibliographie	25
2 - Transport du nitrate par la racine	27
Systèmes de transport et prélèvement du nitrate	28
Couplage énergétique de l'absorption du nitrate par la racine	31
Absorption de NO ₃ et couplage chimiosmotique	35
Devenir du nitrate	36
Régulation de l'absorption	38
Limites de l'absorption du nitrate au champ	39
Bibliographie	41
3 - Assimilation du nitrate : nitrate et nitrite réductases	45
Voie d'assimilation du nitrate chez les plantes supérieures	45
Structure et fonction de la nitrate réductase (NR)	
et de la nitrite réductase (NiR)	46
Génétique de la NR et de la NiR	51
Régulation de la NR et de la NiR	54
Aspect biotechnologique	62
Conclusion	63
Bibliographie	64
4 - Nutrition ammoniacale des plantes	67
Absorption et transport de NH ₄ ⁺	67

	Nutrition ammoniacale et physiologie de la plante	74 82
5 -	-Assimilation de l'ammonium	85
	Assimilation de l'ammonium chez les plantes supérieures	85
	La glutamine synthétase (GS)	91
	La glutamate synthase (GOGAT)	97
	Utilisation de mutants et de plantes transgéniques	100
	Bibliographie	106
6 -	-Intégration de l'absorption du nitrate dans la plante	109
	Mise en évidence de la régulation de l'absorption de NO ₃	110
	Signalétique feuille/racine et régulation de l'absorption de NO ₃	115
	Conclusion	125
	Bibliographie	127
	Assimilation symbiotique de l'azote	
_	• •	100
7 -	- Fixation symbiotique de l'azote	133
	Organisation structurale et fonctionnelle	
	des nodosités de légumineuses	133
	Potentiel et limitation de la fixation biologique de l'azote	140
	Conclusion	145
	Bibliographie	145
8 -	- Signaux symbiotiques chez Rhizobium	149
	Les étapes symbiotiques précoces	149
	Les gènes <i>nod</i> contrôlent l'infection, la nodulation et la spécificité	117
	d'hôte	150
	Les gènes <i>nod</i> déterminent la production de signaux extra-cellulaires	150
	reconnus par la plante	153
	Les gènes <i>nod</i> communs et la synthèse du squelette lipo-	101
	oligosaccharidique	154
	La nature des substituants détermine le spectre d'hôte de la souche	155
	Sécrétion des facteurs Nod	158
	Facteurs Nod et réponses des légumineuses	
	Perception des facteurs Nod par la plante et transduction du signal	158
		159
	Les lipo-chitooligosaccharides : une nouvelle classe	1/1
	de régulateurs de croissance ?	161
	Bibliographie	161
9 .	- Nitrogénase : aspects biochimiques, moléculaires et génétiques	163
	Symbiose obligatoire et fixation à l'état libre	163
	Structure et fonction de la nitrogénase	164

Caractérisation et organisation des gènes impliqués dans la fixation	
de l'azote symbiotique	167
Gènes de structure et de maturation du complexe nitrogénase	
(gènes nif)	
Transfert des électrons sur la nitrogénase (gènes nif et fix)	169
Transcription des opérons nif et fix sous contrôle du gène	
régulateur nifA.	170
Implication de systèmes à deux composants dans la régulation : exemple de NtrBC.	172
Gènes de régulation fixLJK chez R. meliloti:	
modèle de régulation de la fixation de l'azote pendant la symbiose	[:] 174
Régulation de la fixation de l'azote chez d'autres Rhizobiaceae	176
Bibliographie	177
10 -Assimilation de l'azote par les symbioses ectomycorhiziennes	179
Acquisition de l'azote	181
Réduction du nitrate	183
Assimilation de NH ₄ chez les champignons ectomycorhiziens	: 185
Assimilation de NH ₄ dans les ectomycorhizes	188
Conclusion	191
Bibliographie	192
· ·	
Synthèse, transport des acides aminés et relations C/N	
11 - Synthèse des acides aminés	199
Les acides aminés	199
Assimilation de l'ammonium, synthèse de glutamine,	
de glutamate et d'asparagine	1 203
Transamination	205
Synthèse des différentes familles d'acides aminés	
Synthèse des uréïdes	
Conclusion	
Bibliographie	
12 - Transport des acides aminés dans la plante	221
Acides aminés transportés	
Transport des acides aminés au niveau cellulaire	
Transport de composés particuliers	228
Transport à longue distance	F11
Conclusion	
Bibliographie	

13 - Coordination entre métabolismes azoté, photosynthétique	
et respiratoire	235
Éclatement des métabolismes azoté et carboné entre	
les différents organites cellulaires	236
Métabolisme azoté et respiration	238
Métabolisme azoté et photosynthèse	239
Fourniture d'α-cétoglutarate, accepteur d'ammonium	240
Azote et métabolisme carboné	241
Modulation de l'activité des enzymes du métabolisme carboné	
par le nitrate et ses dérivés	242
Interactions carbone/azote étudiées à l'aide des plantes transgéniques	244
Bibliographie	246
14 - Nutrition azotée (NO ₃) et distribution du carbone	
dans la plante	249
Action du nitrate sur la croissance et l'expansion foliaire	250
Action du nitrate sur la croissance et la mise en réserve racinaires	254
Conclusion	258
Bibliographie.	258
Allocation de l'azote au cours de la croissance et du développement de la plante	
15 - Méthodologie ¹⁵ N	265
La répartition isotopique	265
Méthodes analytiques de marquage isotopique	267
Méthodologie concernant le marquage	
par l'isotope stable de l'azote ¹⁵ N	268
Imagerie isotopique de l'azote	279
Bibliographie	280
16 - Mobilisation des réserves azotées chez les plantes herbacées	281
Redistribution de l'azote au cours de la formation	
du grain (blé, maïs)	281
Mobilisation des réserves azotées au cours de la repousse	
des espèces fourragères	286
Conclusion	292
Bibliographie	293
17 - Gestion de l'azote chez les espèces ligneuses	295
Cycle interne de l'azote	295
Composition des réserves végétatives	297
Localisation	299
Transport de l'azote	299

Allocation du carbone	301
Conclusion	
Bibliographie	
18 - Synthèse protéique dans les grains et les graines	307
Biosynthèse des protéines	307
Caractéristiques biochimiques et physiologiques des protéines	
de réserve	313
Régulation de l'expression des gènes	
de la biosynthèse des protéines	320
Influence des facteurs agroclimatiques sur la synthèse	
et l'accumulation des protéines	322
Rôle et intérêt des protéines des grains	323
Bibliographie	324
19 - La protéolyse chez les plantes supérieures : nature, fonction	327
et régulation	
Classification des protéases	
Mécanismes de dégradation des protéines	331
Régulation de la protéolyse dans le métabolisme et le développement	
de la cellule végétale	
Perspectives	
Bibliographie	349
Azote : écophysiologie et agronomie	
20 - Nutrition azotée et croissance des peuplements végétaux cultivés .	355
Accumulation d'azote et productivité d'un peuplement:	
teneur critique en azote	355
Distribution de l'azote dans le peuplement	
Nutrition azotée et croissance d'un peuplement :	
principaux mécanismes	360
Un exemple de variabilité d'efficience d'utilisation de l'azote	
Conclusion	
Bibliographie	
Dionograpino il	-
21 -Azote: production agricole et environnement	369
La gestion de l'azote dans les systèmes de culture aujourd'hui	370
Quelques questions pour l'avenir	372
Conclusion	
Bibliographie	
22 - Azote et pollution	
Principaux flux d'azote à l'origine des pollutions	383

12 ASSIMILATION DE L'AZOTE CHEZ LES PLANTES

Variabilité des flux polluants et maîtrise par les agriculteurs	385 398
Bibliographie	399
Glossaire	403
Index	413
Listes des auteurs	419

Assimilation des nitrates : aspect historique

J.-F. Morot-Gaudry

La nutrition des plantes intéresse l'homme depuis l'antiquité. Aristote suppose que les plantes reçoivent directement du sol une « nourriture élaborée » qui leur permet de croître et de se développer. Au xviº siècle, Palissy semble acquérir une notion assez claire du rôle des « sels » sur la vie des végétaux, mais ses observations et ses remarques de bon sens sont vite oubliées. Au xviiº siècle, Malpighi suggère que les feuilles jouent un rôle dans la transformation des substances nutritives reçues des racines. Mariotte postule que « les principes des plantes sont des recombinaisons de principes plus simples tirés du sol » (Carles, 1967).

A la fin du xviiie siècle, Hassenfratz, Thaer, émettent la fameuse « théorie de l'humus » selon laquelle les plantes tirent du sol les substances organiques nécessaires à leur croissance. Les éléments minéraux de l'humus ne seraient que des impuretés sans intérêt. Ce n'est qu'en 1840 que von Liebig, utilisant les travaux de de Saussure et de Boussingault, ruine la théorie de l'humus et établit enfin le caractère purement minéral de l'alimentation des plantes. Ces travaux sont confirmés par Raulin, Sachs, Ville, Knop. Entre 1840 et 1870, ces chercheurs réalisent des cultures de plantes sur milieu hydroponique artificiel et montrent le rôle primordial des racines dans l'absorption de l'azote, du phosphore, du potassium et des autres éléments minéraux (Boulaine, 1990). Il faut attendre le début du siècle pour montrer que le nitrate peut être réduit en nitrite et ammonium par les extraits végétaux. En 1924, Anderson observe que la teneur en nitrate des plantes varie en fonction des conditions de croissance. Les extraits de pomme de terre contiendraient un « mécanisme » thermolabile capable de réduire le nitrate en nitrite. La même année, Eckerson observe également que des extraits de tomate sont capables de réduire le nitrate en présence de glucides, aussi bien à la lumière qu'à l'obscurité, mais en absence d'oxygène. En 1937, Nightingale présente une revue très complète sur le métabolisme azoté chez les plantes. Il décrit comment est stocké et réduit le nitrate dans les différents organes végétaux. Il montre comment les facteurs externes (pH du milieu, éclairement, température, environnement ionique...) et les facteurs internes (pH cellulaire, teneurs en glucides, état de croissance et de développement...) régulent le métabolisme azoté chez les plantes. Il présente également une excellente analyse de la nutrition nitrique comparée à la nutrition ammoniacale. En 1943, Bürstrom complète ces approches en soulignant le rôle essentiel de la lumière dans le mécanisme de réduction du nitrate.

En 1951, Delviche utilise l'isotope lourd ¹⁵N de l'azote pour étudier l'assimilation du nitrate par des plants de tabac. C'est à partir de cette époque que sont entrepris les premiers travaux d'extraction, de purification et de caractérisation de la nitrate réductase. Evans et Nason, en 1953, confirment que le nitrite est bien un intermédiaire de la réduction du nitrate et que le processus de réduction est enzymatique, faisant intervenir la nitrate réductase à pyridine nucléotide. Cette enzyme est décrite par Nicholas et Nason en 1955. Entre les années 60-70, de nombreuses approches biochimiques menées par exemple par l'équipe de Hageman (Hageman 1960; Schrader *et al.* 1968) et de Losada (Losada 1975) permettent de caractériser biochimiquement l'enzyme et de comprendre sa régulation.

A partir de 1980, les approches immunologiques (Smarelli et Campbell 1981; Chérel et al. 1985) sont le préalable nécessaire aux études moléculaires qui vont se développer. Les premiers ARN messagers seront isolés par Crawford et al. (1986), Cheng et al. (1986), Commere et al. (1986). Ces travaux permettront une avancée prodigieuse des connaissances sur la structure et la régulation de cette enzyme, présente en très faible quantité dans les tissus végétaux et de surcroit très labile.

Bibliographie

- Anderson V.L., 1924 Some observations on the nitrate-reducing properties of plants. Ann. Bot., 38, 699-706.
- Boulaine J., 1990 Deux siècles de fertilisation minérale. In Deux siècles de progrès pour l'agriculture et l'alimentation. Ed. Académie d'Agriculture de France, Technique et Documentation Lavoisier, Paris, 14, 131-145.
- Bürstrom H., 1943 Photosynthesis and assimilation of nitrate by wheat leaves. Ann. Agr. Coll., Sweden, 11, 1-50.
- Carles J., 1967 La nutrition de la plante. Que sais-je ? Presses universitaires de France, Paris, 128 p.
- CHENG C.L., DEWDNEY J., KLEINHOFS A., GOODMAN H.M., 1986 Cloning and nitrate induction of nitrate reductase mRNA. P. N. Acad. Sci. USA, 83, 6825-6828.
- CHÉREL I., GROSCLAUDE J., ROUZÉ P., 1985 Monoclonal antibodies identify multiple epitopes on maize leaf nitrate reductase. *Biochem. Biophys. Res. Commun.*, **129**, 685-691.
- COMMERE B., CHÉREL I., KRONENBERGER J., GALANGAU F., CABOCHE M., 1986 n vitro translation of nitrate reductase messenger RNA from maize and tobacco and detection with an antibody directed against the enzyme of maize. *Plant Science*, 44, 191-203.
- Crawford N.M., Campbell W.H., Davis R.W., 1986 Nitrate reductase from squash: cDNA cloning and nitrate regulation. *P. N. Acad. of Sci.*, USA, **83**, 8073-8076.
- DELVICHE C.C., 1951 The assimilation of ammonia and nitrate ions by tobacco plants. *J. Biol. Chem.*, **189**, 167-175.
- Eckerson S.H., 1924 Protein synthesis by plants. I. Nitrate reduction. Bot. Gaz., 77, 377-390.

- Evans H.J., Nason A., 1953 Pyridine nucleotide-nitrate reductase from extracts of higher plants. *Plant Physiol.*, 8, 233-254.
- HAGEMAN R.H., FLESHER D., 1960 Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. *Plant Physiol.*, 35, 700-708.
- Losada M., 1975 Metalloenzymes of the nitrate-reducing system. J. Mol. Catal., 1, 245-264.
- Nicholas D.J.D., Nason A., 1955 Role of molybdenum as a constituent of nitrate reductase from soybean leaves. *Plant Physiol.*, **30**, 135-138.
- NIGHTINGALE G.T., 1937 The nitrogen nutrition of green plants. Bot. Rev., 3, 86-174.
- Schrader L.E., Ritenour G.L., Eilrich G.L., Hageman R.H., 1968 Some characteristics of nitrate reductase from higher plants. *Plant Physiol.*, **43**, 930-940.
- SMARRELLI J., CAMPBELL W.H., 1981 Immunological approaches to structural comparisons of assimilatory nitrate reductases. *Plant Physiol.*, **68**, 1226-1230.

Assimilation du nitrate et de l'ammonium